Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. Evidence suggests that the Milky Way (MW) underwent a major collision with the Gaia–Sausage/Enceladus (GSE) dwarf galaxy around cosmic noon. While GSE has since been fully disrupted, it brought in ex situ stars and dynamically heated in situ stars into the halo. In addition, the gas-rich merger may have triggered a burst of in situ star formation, potentially giving rise to a chemically distinct stellar component. Aims. We investigated the region of phase space where stars formed during the GSE merger likely reside, and retain distinct chemical and dynamical signatures. Methods. Building on our previous investigation of metallicity ([Fe/H]) and vertical angular momentum (LZ) distributions, we analysed spectroscopic samples from GALAH, APOGEE, SDSS, and LAMOST, combined withGaiakinematics. We focused on high proper-motion stars as effective tracers of the phase-space volume likely influenced by the GSE merger. To correct for selection effects, we incorporated metallicity estimates derived from SDSS and SMSS photometry. Results. Our analysis reveals that low-αstars with GSE-like kinematics exhibit bimodality in [Na/Fe] and [Al/Fe] at −1.0 ≲[Fe/H] ≲ −0.4. One group follows the low light-element abundances of GSE stars, while another exhibits enhanced values. These low-α, high-Na stars have eccentric orbits but are more confined to the inner MW. Eos overlaps with a high-eccentricity subset of these stars, implying that it constitutes a smaller structure nested within the broader population. After correcting for sampling biases, we estimated a population ratio of approximately 1:10 between the low-α, high-Na stars and the GSE debris. Conclusions. These results suggest that the low-α, high-Na stars formed in a compact region, likely fuelled by gas from the GSE progenitor, analogous to clumpy star-forming clouds seen in high-redshift galaxies. Such stars may trace the first sparks of more extensive merger-driven starburst activity.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Abstract We report the discovery of a new subclass of carbon-enhanced metal-poor (CEMP) stars, characterized by high absolute carbon abundances (A(C) > 7.39) and extremely low metallicity ([Fe/H] ≤ –3.1) but notably lacking enhancements in neutron-capture elements, thus falling under the CEMP-no category. This population emerged from a detailed analysis of low-resolution spectroscopic data obtained from the Sloan Digital Sky Survey and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, where the observed frequency trends with the decreasing metallicity of CEMP-s(s-process-enhanced) and CEMP-no (no neutron-capture enhanced) stars deviated from established expectations. In contrast to earlier findings, we observe a rise in high-A(C) stars below [Fe/H] = −3.1, which we interpret as a distinct group not accounted for in traditional CEMP classifications. Following the Yoon–Beers group classification, we define these stars as Group IV. Statistical modeling confirms their presence as a separate peak in theA(C) distribution, and available radial velocity data suggest that about 30% of Group IV stars may be binaries, indicating possible binary-related formation mechanisms. This discovery challenges the current CEMP-no star formation pathways and implies the existence of alternative or hybrid enrichment scenarios in the early Universe. High-resolution spectroscopic follow-up of Group IV candidates will be crucial for identifying their progenitors and understanding their evolutionary implications.more » « lessFree, publicly-accessible full text available September 25, 2026
-
Abstract We study the formation of stars with varying amounts of heavy elements synthesized by the rapid neutron-capture process (r-process) based on our detailed cosmological zoom-in simulation of a Milky Way–like galaxy with anN-body/smoothed particle hydrodynamics code,asura. Most stars with no overabundance inr-process elements, as well as the stronglyr-process-enhanced (RPE)r-II stars ([Eu/Fe] > +0.7), are formed in dwarf galaxies accreted by the Milky Way within the 6 Gyr after the Big Bang. In contrast, over half of the moderately enhancedr-I stars (+0.3 < [Eu/Fe] ≤ +0.7) are formed in the main in situ disk after 6 Gyr. Our results suggest that the fraction ofr-I andr-II stars formed in disrupted dwarf galaxies is larger the higher their [Eu/Fe] is. Accordingly, the most strongly enhancedr-III stars ([Eu/Fe] > +2.0) are formed in accreted components. These results suggest that non-r-process-enhanced stars andr-II stars are mainly formed in low-mass dwarf galaxies that hosted either none or a single neutron star merger, while ther-I stars tend to form in the well-mixed in situ disk. We compare our findings with high-resolution spectroscopic observations of RPE metal-poor stars in the halo and dwarf galaxies, including those collected by theR-Process Alliance. We conclude that observed [Eu/Fe] and [Eu/Mg] ratios can be employed in chemical tagging of the Milky Way’s accretion history.more » « lessFree, publicly-accessible full text available September 3, 2026
-
Abstract We introduce new high-resolution galaxy simulations accelerated by a surrogate model that reduces the computation cost by approximately 75%. Massive stars with a zero-age main-sequence mass of more than about 10M⊙explode as core-collapse supernovae (CCSNe), which play a critical role in galaxy formation. The energy released by CCSNe is essential for regulating star formation and driving feedback processes in the interstellar medium (ISM). However, the short integration time steps required for SN feedback have presented significant bottlenecks in astrophysical simulations across various scales. Overcoming this challenge is crucial for enabling star-by-star galaxy simulations, which aim to capture the dynamics of individual stars and the inhomogeneous shell’s expansion within the turbulent ISM. To address this, our new framework combines direct numerical simulations and surrogate modeling, including machine learning and Gibbs sampling. The star formation history and the time evolution of outflow rates in the galaxy match those obtained from resolved direct numerical simulations. Our new approach achieves high-resolution fidelity while reducing computational costs, effectively bridging the physical scale gap and enabling multiscale simulations.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract Metal-poor stars enriched by a single supernova (mono-enriched stars) are direct proof (and provide valuable probes) of supernova nucleosynthesis. Photometric and spectroscopic observations have shown that metal-poor stars have a wide variety of chemical compositions; the star’s chemical composition reflects the nucleosynthesis process(es) that occurred before the star’s formation. While the identification of mono-enriched stars enables us to study the ejecta properties of a single supernova, the fraction of mono-enriched stars among metal-poor stars remains unknown. Here we identify mono-enriched stars in a dwarf galaxy cosmological zoom-in simulation resolving individual massive stars. We find that the fraction of mono-enriched stars is higher for lower metallicity in stars with [Fe/H] < −2.5. The percentages of mono-enriched stars are 11% at [Fe/H] = −5.0 and 1% at [Fe/H] = −2.5, suggesting that most metal-poor stars are affected by multiple supernovae. We also find that mono-enriched stars tend to be located near the center of the simulated dwarf. Such regions will be explored in detail in upcoming surveys such as the Prime Focus Spectrograph on the Subaru telescope.more » « lessFree, publicly-accessible full text available February 13, 2026
-
Abstract The chemical abundances of Milky Way’s (MW's) satellites reflect their star formation histories (SFHs), yet, due to the difficulty of determining the ages of old stars, the SFHs of most satellites are poorly measured. Ongoing and upcoming surveys will obtain around 10 times more medium-resolution spectra for stars in satellites than are currently available. To correctly extract SFHs from large samples of chemical abundances, the relationship between chemical abundances and SFHs needs to be clarified. Here, we perform a high-resolution cosmological zoom-in simulation of a MW-like galaxy with detailed models of star formation, supernova (SN) feedback, and metal diffusion. We quantify SFHs, metallicity distribution functions, and theα-element (Mg, Ca, and Si) abundances in satellites of the host galaxy. We find that star formation in most simulated satellites is quenched before infalling to their host. Star formation episodes in simulated satellites are separated by a few hundred Myr owing to SN feedback; each star formation event produces groups of stars with similar [α/Fe] and [Fe/H]. We then perform a mock observation of the upcoming Subaru Prime Focus Spectrograph (PFS) observations. We find that Subaru PFS will be able to detect distinct groups of stars in [α/Fe] versus [Fe/H] space, produced by episodic star formation. This result means that episodic SFHs can be estimated from the chemical abundances of ≳1000 stars determined with medium-resolution spectroscopy.more » « less
-
Abstract The ancient Large Magellanic Cloud (LMC) globular cluster NGC 2005 has recently been reported to have an ex situ origin, thus, setting precedents that the LMC could have partially formed from smaller merged dwarf galaxies. We here provide additional arguments from which we conclude that is also fairly plausible an in situ origin of NGC 2005, based on the abundance spread of a variety of chemical elements measured in dwarf galaxies, their minimum mass in order to form globular clusters, the globular cluster formation imprints kept in their kinematics, and the recent modeling showing that explosions of supernovae are responsible for the observed chemical abundance spread in dwarf galaxies. The present analysis points to the need for further development of numerical simulations and observational indices that can help us to differentiate between two mechanisms of galaxy formation for the LMC; namely, a primordial dwarf or an initial merging event of smaller dwarfs.more » « less
-
Abstract Photometric stellar surveys now cover a large fraction of the sky, probe to fainter magnitudes than large-scale spectroscopic surveys, and are relatively free from the target selection biases often associated with such studies. Photometric-metallicity estimates that include narrow/medium-band filters can achieve comparable accuracy and precision to existing low-resolution spectroscopic surveys such as Sloan Digital Sky Survey/SEGUE and LAMOST. Here we report on an effort to identify likely members of the Galactic disk system among the very metal-poor (VMP; [Fe/H] ≤ −2) and extremely metal-poor (EMP; [Fe/H] ≤ −3) stars. Our analysis is based on an initial sample of ∼11.5 million stars with full space motions selected from the SkyMapper Southern Survey (SMSS) and Stellar Abundance and Galactic Evolution Survey (SAGES). After applying a number of quality cuts to obtain the best available metallicity and dynamical estimates, we analyze a total of ∼5.86 million stars in the combined SMSS/SAGES sample. We employ two techniques that, depending on the method, identify between 876 and 1476 VMP stars (6.9%−11.7% of all VMP stars) and between 40 and 59 EMP stars (12.4%−18.3% of all EMP stars) that appear to be members of the Galactic disk system on highly prograde orbits (vϕ> 150 km s−1). The total number of candidate VMP/EMP disklike stars is 1496, the majority of which have low orbital eccentricities, ecc ≤ 0.4; many have ecc ≤ 0.2. The large fractions of VMP/EMP stars associated with the Milky Way disk system strongly suggest the presence of an early-forming “primordial” disk.more » « less
-
ABSTRACT We employ a sample of 135 873 RR Lyrae stars (RRLs) with precise photometric-metallicity and distance estimates from the newly calibrated P–ϕ31–R21–[Fe/H] and Gaia G band P–R21–[Fe/H] absolute magnitude–metallicity relations of Li et al., combined with available proper motions from Gaia EDR3, and 6955 systemic radial velocities from Gaia DR3 and other sources, in order to explore the chemistry and kinematics of the halo of the Milky Way (MW). This sample is ideally suited for characterization of the inner- and outer-halo populations of the stellar halo, free from the bias associated with spectroscopically selected probes, and for estimation of their relative contributions as a function of Galactocentric distance. The results of a Gaussian mixture model analysis of these contributions are broadly consistent with other observational studies of the halo, and with expectations from recent MW simulation studies. We apply the hdbscan clustering method to the specific energies and cylindrical actions (E, Jr, Jϕ, Jz), identifying 97 dynamically tagged groups (DTGs) of RRLs, and explore their associations with recognized substructures of the MW. The precise photometric-distance determinations (relative distance errors on the order of 5 per cent or better), and the resulting high-quality determination of dynamical parameters, yield highly statistically significant (low) dispersions of [Fe/H] for the stellar members of the DTGs compared to random draws from the full sample, indicating that they share common star-formation and chemical histories, influenced by their birth environments.more » « less
-
Abstract We construct a sample of 644 carbon-enhanced metal-poor (CEMP) stars with abundance analyses based on moderate- to high-resolution spectroscopic studies. Dynamical parameters for these stars are estimated based on radial velocities, Bayesian parallax-based distance estimates, and proper motions from Gaia EDR3 and DR3, supplemented by additional available information where needed. After separating our sample into the different CEMP morphological groups in the Yoon–Beers diagram of absolute carbon abundance versus metallicity, we used the derived specific energies and actions ( E , J r , J ϕ , J z ) to cluster them into Chemodynamically Tagged Groups (CDTGs). We then analyzed the elemental-abundance dispersions within these clusters by comparing them to the dispersion of clusters that were generated at random. We find that, for the Group I (primarily CEMP- s and CEMP- r / s ) clustered stars, there exist statistically insignificant intracluster dispersions in [Fe/H], [C/Fe] c (evolution corrected carbon), and [Mg/Fe] when compared to the intracluster dispersions of randomly clustered Group I CEMP stars. In contrast, the Group II (primarily CEMP-no) stars exhibit clear similarities in their intracluster abundances, with very low, statistically significant, dispersions in [C/Fe] c and marginally significant results in [Mg/Fe]. These results strongly indicate that Group I CEMP stars received their carbon enhancements from local phenomena, such as mass transfer from an evolved binary companion in regions with extended star formation histories, while the CDTGs of Group II CEMP stars formed in low-metallicity environments that had already been enriched in carbon, likely from massive rapidly rotating ultra- and hyper-metal-poor stars and/or supernovae associated with high-mass early-generation stars.more » « less
An official website of the United States government
